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Abstract— While predictive planning approaches have had
broad success in robot navigation, most implementations of
them have important limitations. In particular, they plan
around a single predicted outcome (plus uncertainty) or the
union of several likely outcomes. Here, we introduce the Multi-
World Motion Planning problem, where a robot plans around
each likely outcome separately, while maintaining a safe tra-
jectory until it can determine which of the predictions actually
happened. We introduce a method both for split-detection
(understanding when multiple plans can be created) and split-
planning (planning path over these separate contingencies). We
apply our techniques to simulated robots with both holonomic
and non-holonomic dynamics in a variety of scenarios. We show
our resulting approach can produce substantially safer and
shorter trajectories than traditional motion planning in critical
situations that commonly arise in tasks such as navigating in
human environments.

I. INTRODUCTION

Predictive planning approaches have revolutionized the

ability of robots to move through complex environments with

dynamic obstacles. By allowing robots to anticipate what

outcomes are likely to happen in the world around them,

we can have robots take more confident paths that reach

their goals quickly and safely [1]. However, there are often

cases where no single predicted path can successfully capture

the entire range of likely outcomes an dynamic obstacle

may take in the future. This is especially true in scenarios

involving humans moving through constrained environments

with branching paths and obstacles, such as commonly found

in building interiors. For example, consider a pole in the

middle of a hallway, a pedestrian must walk either left

or right (but not both!) to avoid the pole. Our goal is to

exploit this latent structure to find new robot trajectories not

otherwise possible.

In order to capture the branching nature inherent in some

prediction tasks we introduce a new formalization called

Multi-World Motion Planning. Here, the goal is to compute

the best robot trajectory possible given a discrete set of likely

predictions for nearby obstacles, of which only one instance

will actually be encountered. Existing techniques for motion

planning typically account for this prediction uncertainty

using two broad strategies. One, is by using a maximum

likelihood assumption to compute the single prediction which

is most representative of the likely future outcomes. The

other, is to plan a conservative path around the entire range

of likely outcomes. Here, we propose a third approach of

Branched Planning, where the robot plans separately for
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each future eventuality, while maintaining a safe, flexible

trajectory until it has enough information to determine which

eventuality will actually occur.

To this end, we propose three main contributions.

• Multi-World Motion Planning problem: We introduce

the Multi-World Motion Planning problem, providing

both a formal problem description and a discussion of

its applicability to various planning problems.

• Split Detection: We propose and analyze a new method

for analyzing predicted obstacle trajectories to automat-

ically determine when they can be safely decomposed

into disjoint sets of predictions.

• Branch Planning: We propose a space-time planning

approach which extends RRT and iLQR to account

for the branched predictions which result from split

detection.

II. RELATED WORK

A wide variety of previous work has proposed various

techniques for robot planning among dynamic obstacles.

When obstacles paths are known, planning over configuration

space-time graphs using Probabilistic Roadmaps (PRM) [2]

or Rapidly-exploring Random Trees (RRT) [3] allows a robot

to find collision-free trajectories that can be optimal [4] even

under kinematic constraints [5]. When there is uncertainty in

a robot’s sensing or control, the problem can be formulated

as a POMDP [6] and solved using value iteration to de-

termine optimal policies [7], [8]. Recent work has focused

on overcoming computational limitations of POMDP using

local gradient-based optimization in belief space [9], [10],

[11], combined with RRT or PRM to initialize a global path.

Other recent work flattens the belief space by utilizing local

controllers to drive the system to specific belief states [12].

Multi-world motion planning has potential application in

areas where highly predictive models of obstacles exist,

such as robots planning among obstacles following classical

physical laws [13], multi-robot motion planning when a robot

has access to potential motion models of other robots [14] in

its environment, and motion planning in human environments

where crowd simulations can give predictions of likely

human paths [15], [16].

Human-aware robot navigation, in particular, has received

significant recent attention from researchers [17]. Work in

this area often focuses on human-specific optimizations such

as maintaining comfortable passing distances [18], [19], [20],

minimizing confusing turns [21], and analyzing the effect

biomechanics has on likely human motion [22].

Most closely related to our work are planning techniques

which are designed to closely integrate with (probabilistic)



predictions of likely human motion. For example, Ziebart

et al. [23] proposed a joint optimization function which

minimized the trajectory cost over all likely future human

paths. More recent work has highlighted the dangers that

planning over all paths can have, as it may lead to a “robot

freezing” problem where the robot stands stuck, unable

to find a path which satisfies all predicted eventualities

simultaneously. Trautman et al. [24], proposes to overcome

this problem by jointly optimizing over the set of robot and

human paths. In effect, this assumes the humans and robots

will cooperate when needed, allowing the robot taking bold

paths through the crowd.

At a high level, the works of Ziebart et al. and Trautman et

al. illustrate the fundamental trade-offs inherent in planning

under a set of likely trajectory predictions. Plans which

account for all outcomes can be overly conservative, causing

a robot to freeze. Planning over a single best (e.g., maximally

likely) set of trajectories can be overly optimistic and require

the obstacles in the environment to cooperate to produce

collision-free trajectories. While this assumption can work

very well in the case of attentive, cooperative humans, it can

be overly optimistic in some cases (e.g,. distracted pedes-

trians) and cannot account for planning around inanimate

obstacles which do not respond do the robot. In contrast

with previous work, our work provide guaranteed collision

avoidance of the entire set of likely obstacles trajectories

while still working to unfreeze the robot by considering each

prediction independently whenever possible.

III. APPROACH OVERVIEW

We will consider a robot following a Sense-Predict-Plan-

Act loop (e.g., as in [25]) as is typically applied in predictive,

simulation-driven navigation. As discussed above, the key

feature of our approach is that the robot does not attempt

to avoid all predictions at once, rather we allow a robot to

plan over a variety of different predictions independently,

choosing a single plan only when enough information is

present to know which of the predicted outcomes is actually

occurring.

When confronted with a probabilistic distribution of likely

obstacle trajectories, traditional discrete-time motion plan-

ning (such as in [23]) uses an ‘Avoid All’ approach which

can be formalized as follows: Given an initial state, x0, a goal

state, g, a dynamics function, f(x,u), and a time-varying

function which predicts likely obstacle states, O(t). Our goal

is to optimize the cost function C(x,u):

min
T,u0...uT

T∑

t=0

C(xt,ut) (1)

such that:

xt+1 = f(xt,ut) ∀t

xT+1 = g

xt /∈ O(t) ∀t

where xt and ut are, respectively, the state and controls of

the robot at time t. That is, we find a cost minimal path from

x0 to g that obeys the dynamics of the robot, and avoids any

configuration in the collision state, O.

However, it is possible to outperform this Avoid All

approach by exploiting the structure of the obstacles set

O. Here, we are exploiting the observation that an given

obstacle can only be in one place at a time. Given an

estimate of distributions of likely obstacles locations (e.g.,

as a Gaussian mixture model), we identify conditions where

this distribution can be represented a disjoint distribution

as described in Section IV. We refer to each of these

opportunities as splits, and the process of identifying them a

split-detection.

Importantly, a robot is free to plan over each branch of

a split separately (assuming it can reliably identify which

predicted branch happens in execution). Specifically, we

define a branch as the set of controls and states that all

are avoiding the same split in the prediction. To define the

relations between branches, we use a parentage function,

denoted as p(t, j) to map the state in branch j at time t
to its parent state in branch k at time t−1. Note that if there

are no splits between t − 1 and t, the parent branch is the

current branch. We use x(t,j), to represent the state of the

robot at time t on branch j (and the same for u(t,j)). We

denote the number of branches at time t as bt.
Using the split from our split-detection, we can define

the formal multi-world motion planning problem. Given

an initial state x(0,0), a goal state, g, a dynamics func-

tion, f(x,u), a time- and branch-varying obstacle function,

O(t, j), the branch parentage function, p(t, j), a branch

likelihood, P (t, j), and a cost function C(x,u), we optimize:

min
T,u(0,0)...u(T,bT )

T∑

t=0

bt−1∑

j=0

P (t, j) C(x(t,j),u(t,j)) (2)

such that:

x(t+1,j) = f(x(t,p(t+1,j)),u(t,p(t+1,j))) ∀t ∀j

x(T,j) = g ∀j

x(t,j) /∈ O(t, j) ∀t ∀j

Note that if there are no splits (i.e. bt = 1 and p(t, j) =
j ∀t , j), this is exactly the traditional motion planning opti-

mization function. The dynamics constraint enforces that two

split trajectories with the same parent state must start at that

parent state at the point of the split. The branch likelihood

function P serves to avoid weighing the costs more heavily

when there are more branches.

Key Assumptions. We assume the robot has access to a noisy

estimate of its current position (e.g., via SLAM [26], [27],

[28]) and noisy estimates of the location of nearby obstacle

(such as pedestrians). Many prior results have demonstrated

the feasibility of fast, approximate solutions for this localiza-

tion in the presence of humans using Kinect cameras [29],

and have shown methods to identify and estimate pedestrian

locations using RGB+Depth cameras [30], [31]. We also

assume that a robot is provided, via a higher level planner,

with a goal location which it desires to reach in a timely

fashion.



Trajectory Prediction. Throughout this work we assume that

the robot has access to some prediction of the likely future

trajectories of the obstacles around it. While simple constant-

velocity assumptions may make sense in some settings,

typically more sophisticated predictions are preferable. In

many environments these dynamic obstacles will represent

humans, whose trajectories can be predicted using crowd

simulation techniques like the PowerLaw model [32], or

by using data-driven approaches which learn from human

trajectories [23], [33], [34], [35], [36].

After completing the process of Split Detection (Section

IV), we must find plans which can exploit this knowledge

of an impending split in the predicted paths. We discuss our

approach this problem of Branched Planning in Section V.

Finally, Section VI presents comparisons between our pro-

posed method and alternative planning methods.

IV. SPLIT DETECTION

Our split detection algorithm serves two purposes within

our framework. First, we need to transform a (potentially)

sampled distribution of likely obstacle trajectories into a

continuous form suitable for optimization-based planning.

Secondly, we must detect structure in the predictions which

can allow us to separate the predicted motion into easily

identifiable branches. Here, we accomplish both tasks simul-

taneously by fitting Gaussian mixture models (GMM) to the

sampled predictions at each future timestep, and analyzing

the goodness-of-fit. Distributions which have sufficiently

well separated components represent splits in the predicted

obstacle states.

We require two conditions to be met by a given collection

of Gaussians to be considered well representing the underly-

ing distribution for the purposes of split detection. First, the

Gaussians must match the true predicted distribution locally

(i.e., where the Gaussians have values sufficiently larger

than zero). This ensures that avoiding collisions with each

Gaussian will avoid the underlying samples that Gaussian

represents. Secondly, we partition the Guassians into subsets

such that they are sufficiently distinct from every other subset

so that, given a single random sample, it is possible to

identify which subset it is from with high probability. This

ensures that when a robot senses the state of the environment

after a split has happened, it knows which branch of the split

it is in. We can formalize these two conditions as follows:

Given a partitioning of a Gaussian mixture C =
{S1, ..., Sn}, it must satisfy the following for the subsets

to be considered separable:

1. Classification confidence. We define the confidence with

which we can classify a given sample z based on the chance

that the sample comes from the subset of Gaussians from

which it is mostly likely, that is:

maxi(P (z|Si))∑
j(P (z|Sj))

(3)

where P (z|Si) is the probability that sample z would be

generated by the Gaussian mixture Si. As P (z|Si) =

PSi
(z)/

∑
j PSj

(z), where PSi
is the pdf of a subset mixture

model, we can rewrite eq. 3 in terms of the pdfs:

maxi(PSi
(z))∑

j(PSj
(z))

(4)

When this value is high for all samples z, it implies each

sample can be reliably identified as “belonging” to a single

subset of the mixture, as the probability it belongs to the

subset is significantly higher than the probability it belongs

to any other subset.

2. Quality of approximation. In order to be separable, each

partition must be able to independently represent all of the

samples that belong to it without support from other parti-

tions. That is, for all samples, z, the error in reconstructing

the total probability with a single subset is equal to:

|PSi
(z)−

∑

j

PSj
(z)| (5)

We note that the confidence (eq. 4) has a maximum value

of 1 (as PSi
(z) >= 0, ∀i) and the error (eq. 5) has a

minimum value of 0. To achieve these values, it must be

the case that PSi
(z) =

∑
j PSj

(z). As such, the confidence

is maximized, and the error is minimized when the value

of the total Gaussian mixture model is nearly equal to the

maximum of the subset mixture models for all the samples

in the distribution (see Figure 1). Therefore, we may test the

accuracy of a partition’s representation of the total mixture

by measuring the difference between the maximum subset

and total mixture value at each sample state:
∑

i

PSi
(z)−max

j
PSj

(z) (6)

If this sum is sufficiently small for a large enough percentage

of the samples, the distributions are considered separable;

otherwise, the partition is rejected.

In the scenarios shown here, the number of partitions

is typically two or less. However, if multiple separable

partitions are found, the partition with the most subsets is

chosen to allow maximum flexibility while planning. It is

also important to note that this framework does not strongly

rely on the branches being a single Gaussian. Branches

can split between GMMs rather than single Gaussians, or

different additive mixture models can be used (as long as

their PDFs can be efficiently computed). However, because

this increased complexity comes at the cost of additional

runtime, we focus on GMMs as they can be quickly fit using

an EM approach.

Once a stable split has been detected, we label all sub-

sequent samples later in time with the same partitioning.

As a result, once samples have been partitioned separately,

they will not be in the same partition again. This temporal

partitioning relationship is stored in the parentage function.

The overall split-detection algorithm in summarized in Al-

gorithm 1. Here, isSeparable is a function that takes as input

a partition, the samples, and a confidence threshold. The

partition is then tested using equations 4 and 5 against the

threshold to determine if the partition is viable. The function





(a) Predicted pedestian motion

(b) Planned trajectories

Fig. 2: Planning Method Comparison (paths). Here, we

are uncertain if the pedestrian will pass to the left or right

of the pole. Maximum likelihood methods (red), are overly

optimistic and result in collision if the pedestrian path does

not match the prediction. Avoid All planning (orange) results

in overly conservative trajectories to avoid all outcomes.

Branched planning (blue) calculates trajectories for both

sets of likely outcomes, and then selects which to follow

depending on what is observed during execution.

Planning Method Planned Length Executed Length

ML 4.27 4.70
Avoid All 4.66 4.66
Branched 4.31 4.31

TABLE I: Planning Method Comparison (length). Planned

trajectory lengths versus executed trajectory lengths for the

scenario in Fig. 2. Both Avoid All and Branched planners can

successfully execute their plans as expected. However, with

the robot making a maximum likelihood (ML) assumption

the execution can be much worse than planned if the guess

was wrong. On average, Branched planning has the shortest

trajectory.

VI. RESULTS

In this section, we show the results of the split-detection

and split-planning algorithms detailed above. We give the

results in several different scenarios, and provide some

comparisons to alternative planning approaches. In all our

experiments we base our cost function on three terms: chance

of collision, control magnitude, and distance to the goal (for

the final stage). All experiments were run in C++ on a laptop

with an Intel i7 2.6GHz processor.

A. Pole In Hallway

As a motivating scenario, consider the case of a robot

observing a pedestrian moving towards a pole (Fig 2). Here,

we are uncertain if the pedestrian will pass to the left or

right of the pole. We compare the robot paths produced

by different classes of planning approaches in the face of

this uncertainty. Maximum likelihood (ML) methods plan

trajectories assuming that the person will travel along a single

(most likely) instance of the predicted path. Here, it assumes

the person will pass the pole on their right. This works

well if the guess is correct, but leads to much worse paths,

(a) full path

(b) t = 2.0 (c) t = 3.0 (d) t = 4.0

Fig. 3: Hallway Pole Simulation. a. A robot (colored

circle) avoids likely positions of a pedestrian moving down

a hallway (ellipse shows 95% confidence intervals). The

predicted pedestrian path is bifurcated by a large pole (black

circle). Colors indicate time, with green being states that

occur before the split, and red and orange states in the two

branches after the split. b.-d. Time slices of the simulations.

and potentially collisions, if the guess was wrong. Avoid

All planning is safe under both paths the pedestrian may

take, but results in a much longer path than ML planning.

Branched planning calculates contingencies for both paths

and commits to a branch only when its clear which route

the pedestrian will take. As a result, Branched planning finds

trajectories that are more efficient than Avoid All planning.

As compared to Maximum likelihood methods, Branched

planning is slight less efficient when the ML methods make

the right predication, but better on average. This is because

branched planning must take a compromise trajectory that

accounts for both possibilities until it observes which path

the pedestrian takes. See Table I.

We note that the Maximum Likelihood approach can work

very well in scenarios where the obstacles will respond to

the robot. Here, even if the robot predicts incorrectly, the

obstacles (e.g., people) can switch to a different path. This

insight is one of the key assumptions which allows work such

as [24] and [38] to unfreeze the robot in highly constrained

situations. Our approach can also find collision free paths in

certain constrained environments, but without assuming that

obstacles will respond to the robot (though at the cost of less

optimal paths when the obstacles do respond).

The freezing effect of constraints can be seen more clearly

by considering the pole scenario occurring in the middle of a



Fig. 4: Hallway T Simulation. A predictions of likely

pedestrian paths is bifurcated by splits in possible goals at

the T-junction at the end of the hallway. (C.f. Figure 3).

narrow hallway (see Figure 3). Here, there is not enough free

space between the left and right distributions to fit both the

robot and person. As such, Avoid All planning is not able to

find any collision free path to the goal. In contrast, Branched

planning is able to find an efficient path by moving forward

towards the middle of the obstacles until it becomes clear

which direction the human will go. It is worth emphasizing

that the robot is not simply reacting to local conditions, but

rather the robot is planning to react when the necessary

information becomes available.

B. Hallway T Junction

In some scenarios, clustering the predicted paths only on

positions can fail to find splits until agents are very near

their goal. We can improve our split detection by clustering

on other aspects of the obstacle state. Consider the case

shown in Figure 4 of an person heading towards a T-junction

in a hallway. Here, we use a goal estimation (based on

velocities) in addition to positions when clustering predicted

obstacle states. Using this additional knowledge, the robot

can determine which split the agent will take prior to the

predicted positional distributions physically separating. By

exploiting this knowledge of this split, the robot is able

to move towards the end of the hallways sooner, diverting

slightly left or right to avoid the person as they head towards

the T. In the traditional Avoid All planning, the robot would

have to wait until the distribution physically separated before

it could traverse further down the hallway.

C. Differential Drive

In this scenario, we have a differential drive robot attempt-

ing to navigate a hallway. However, there are a series of poles

running down the middle, and a ball is going to roll down

either the left or the right side of the hallway. We assume

we are able to determine the direction the ball will roll in

3 seconds. While our RRT implementation only supports

holonomic dynamics, we can utilize the power of our local

optimization by running a trajectory following controller over

the initial trajectory, and then optimizing the new trajectory

via iLQR. In this scenario, by utilizing its knowledge that

the ball will fall on either side (but not both), the robot can

make progress down the hallway, and dodge either left or

right through the poles to ensure our path stays safe (see

(a) full path

(b) t = 2.0 (c) t = 4.0 (d) t = 5.0

Fig. 5: Differential Drive Simulation. a. A differential drive

robot (orientation indicated by arrow) travels down a hallway

with a mix of static poles (black circles) and a dynamic

obstacle (red/orange circles). The dynamic obstacles path is

naturally constrained into one of two branched by the polls.

b.-d. Time slices of the simulations.

Figure 5). This is in contrast to the Avoid All approach which

is only able to avoid collision by moving away from the goal.

D. Performance increase over standard planning

In addition to producing safer and faster paths, our method

can also be faster to compute than standard planning tech-

niques. This is mostly due to the improved percentage of free

space in constrained areas. Consider an example scenario

with a pole in the middle of a hallway, and two obstacles on

either side of that pole. If the center pole takes up 10% of

the hallway and each side obstacle takes up 40%, the chance

to find a free sample within the constrained region is 10%.

However, if we allow branched planning, the chances that

the sample in each branch are non-colliding is 50% for each

branch, or 25% total. This higher likelihood of choosing free

sample in constrained region increases the rate at which our

algorithm is able to find solution paths.

This can also be seen experimentally in Figure 6. The three

different lines correspond to the size of a pole in the hallway,

while the x-axis shows how varying the size of the split

obstacle on either side of the pole effects the relative runtime

of the two planning algorithms. As the hallway becomes

increasingly more occupied, the branched planning starts
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